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A B S T R A C T   

COPD (Chronic obstructive pulmonary disease), ranking as the 3rd most common cause of death worldwide, 
frequently goes undiagnosed. Yet, the detection of COPD in its early stages is challenging due to the limited 
presence or mild nature of initial symptoms. In this work, the DL (deep learning) model DenseNet201 is utilized 
for classifying COPD using the PFT (Pulmonary Function Test) images. Initially, the pre-processing is carried out 
using the MF (median filter). After the noise elimination process, automated feature extraction and classification 
is carried out using the Pre-trained-DenseNet201 with TSA (tunicate search algorithm). The presented model 
provided satisfactory outcomes, attaining the accuracy of 0.985 and an AUC value of 98.73. These results surpass 
those reported in prior studies utilizing the similar database. Furthermore, the presented approach exhibits 
superior performance compared to various contemporary methods trained concurrently. This study represents 
the inaugural application of the Pre-trained-DenseNet201-with TSA model to this specific dataset for the purpose 
of COPD identification.   

1. Introduction 

COPD (Chronic obstructive pulmonary disease) is a lung ailment 
defined by a substantial world prevalence, elevated mortality rates, and 
considerable medical expenses. Based on the analysis of WHO (World 
Health Organization), by the year 2030, it is anticipated that COPD will 
rank as the 3rd leading cause of death worldwide [1]. However, in-
dividuals with early-stage COPD may be overlooked, given that they 
exhibit either no symptom. Frequently, people are diagnosed when they 
have already progressed to the moderate to severe phase, significantly 
impacting their lives and leading to a substantial rise in treatment costs 
[2]. Recognizing the importance of quick identification, it is crucial to 
identify COPD in its initial stages, as this is accompanied with a less risk 
of less exacerbations, a decrease in the prevalence of multiple disorder, 
and less overall expenses. There is an increasing awareness of the ne-
cessity to detect COPD at an initial phase [3]. 

Spirometry serves as the fundamental tool for diagnosing COPD. 

Despite its significance, there is a notable tendency for under diagnosis, 
particularly in the early stages of COPD due to its limited sensitivity [4]. 
To overcome this limitation, CT (computed tomography) has emerged as 
a valuable alternative. CT scans are employed for capturing and 
analyzing the occurrence, and patterns of phenotypic abnormality 
accompanied with COPD. As a widely adopted imaging modality, CT has 
proven effective in classifying the diverse manifestations of COPD het-
erogeneities [5]. The extensive use of CT presents an opportunity to 
leverage these scans for the identification of individuals with COPD, and 
subsequent confirmation through spirometry can enhance diagnostic 
accuracy [6]. 

Previously, the classification of COPD using CT imaging relied on 
conventional ML (machine learning methods. but, these conventional 
methods often struggled to capture intricate features. On the other hand, 
contemporary DL (deep learning) method, whether implemented from 
the ground up or through fine-tuning, typically demands substantial 
labelled training data and significant computation and memory sources 
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[7]. Furthermore, due to limitations imposed due to the potential of 
available graphical processing units, the complete scan images from 
patients were not fully utilized in the DL models [8]. This work presents 
a DL model for categorizing the normal and COPD images. The sug-
gested COPD model was not only identified by normal and diseased 
images but also attained better accuracy.  

• To present different models for the diagnosis of COPD.  
• To introduce Pre-trained-DenseNet201 for automatic feature 

extraction and COPD classification. 
• To introduce TSA for updation of the weight of Pre-trained-Dense-

Net201’s hyper-parameters. 

The following sections are: In Section 2, a succinct overview of prior 
research efforts concentrating on the identification of COPD is pre-
sented. Section 3 outlines the materials employed and expounds upon 
the proposed COPD. The experimental results are showcased and 
analyzed in Section 4. Finally, Section 5 concludes the study. 

2. Related works 

Altan et al. [9] presented the examination of lung sounds based 
multi-channel by employing statistical features derived from frequency 
modulation. These modulations were extracted through the application 
of the Hilbert Huang transformation. Here, the sensitivity and accuracy 
values achieved 96.3% and 91% respectively. 

Schroeder et al. [10] developed COPD model using the pre-trained 
CNN model using the PET images. Initially, the input images were 
resized and the COPD images were trained. At last, the AUC value 
achieved was 0.814. 

Li et al. [11] demonstrated GCN (graph convolution network) to 
identify the COPD. The demonstration was carried out on the Danish 
lung cancer dataset and achieved better accuracy of 0.77. 

Hasenstab et al. [12] suggested a retrospective investigation, based 
on registration and segmentation of the lung for the automated 
emphysema quantification. Subsequently, the model underwent testing 
in a distinct cohort comprising 8951 individuals. By measuring 
bi-variable thresholds, air trapping and emphysema were established to 
delineate severity stages on CT scans. These defined stages were then 
assessed for their predictive capability in terms of progression of disease 
and death rate, utilizing ML classifiers. 

Dhar, Joy et al. [13] introduced M-SEN (multi-stage ensemble 
network) with the GA (genetic algorithm) for COPD detection. Here, the 
KCM (k-means clustering) was utilized for filling the missing values and 
the isolation forest was used for removing outliers. Accuracy and the 
precision values achieved were 0.982 and 0.98 respectively. 

Ho et al. [14] introduced a 3D-CNN to classify COPD images using 
the CT images. 596 CT images were collected from the individuals; 
finally, accuracy and sensitivity values achieved were 89.3% and 88.3% 
respectively. 

Lopez et al. [15] presented DL model to predict readmission of 
hospitals for COPD and asthma. Here, the dataset was collected from 
Yale New Haven Hospital and achieved an AUC value of 0.86. 

Fig. 1. Workflow of the proposed COPD model.  

Fig. 2. Structure of pre-trained-DenseNet201.  

Table 1 
Measures utilized to compute the performance.  

Measures Formulas 

Accuracy tpo + tne

tpo + tne + fpo + fne 

precision tpo

tpo + fpo 

Recall tpo

tpo + fne 

Specificity tne

tne + fpo   
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3. Proposed methodology 

COPD is a respiratory condition characterized by abnormalities in 
the morphological structure of the lungs, varying in severity. Evaluation 
of COPD typically involves PFT (Pulmonary Function Test) and ap-
proaches utilizing CT. Fig. 1 defines the workflow of the proposed COPD 
model. Here, the pre-processing process is carried out by the MF. Then, 
the automated extraction of features and classification is carried out by 
the pre-trained–DenseNet201-TSA. 

3.1. Pre-processing 

Initially, the input images are resized and the noise removal process 
is performed by the MF approach. The MF operates by replacing a pixel’s 
value with the middle value of the pixels within a small, adjacent win-
dow. The representation of the MF for m × m pixel windowing is 
expressed as follows: 

MF(j(a, b)=Median(j(a+ r, b+ t)) (1)  

where j(a, b) is the value of pixel. 

3.2. Extracting and classifying COPD 

After the noise removal process, the DL model pre-trained– 
DenseNet201 is utilized for automatic extraction of features and classi-
fication of COPD. Fig. 2 presents the structure of pre-trained- 
DenseNet201 and it has 201 layers. This DL model enhances perfor-
mance by utilizing the prior layers effectively. In this architecture, every 
layer receives input from the overall set of prior layers and conveys the 
obtained features forward to the following layers. This design contrib-
utes to improved overall robustness. A fundamental characteristic of 
DenseNet201 lies in its ability to concatenate all the feature maps from 
prior layers. This facilitates the seamless emergence of feature maps via 
the following layers, integrating them with new feature maps. The final 
network iteration presents multiple benefits, including the reuse of 
features and addressing limitations like explosion and gradient vanish. 
These Networks are organized into Dense-Blocks, maintaining constant 
feature map equal in a layer. However, as one progresses over blocks, 
there is a variation in the filters. There are transition layers in the block 
and it is essential for down sampling through 1 × 1 convolution, BN 
(batch normalization) and 2 × 2 pooling layer. 

3.2.1. Weight updation using the TSA 
The TSA represents a population based optimizer designed for 

tackling global optimized challenges. Every tunicate, with a length of 

Fig. 3. Samples images of the dataset.  

Table 2 
Comparative analysis.  

Methods Accuracy precision Recall Specificity 

CNN 0.892 0.824 0.789 0.883 
2D-CNN 0.903 0.831 0.834 0.902 
AlexNet 0.912 0.874 0.845 0.924 
ResNet 0.914 0.893 0.873 0.931 
Denset201 0.956 0.931 0.941 0.942 
Pre-trained-DenseNet201 0.966 0.941 0.947 0.948 
Proposed 0.985 0.962 0.957 0.967  

Fig. 4. Accuracy loss curve of the suggested pre-trained-DenseNet201-TSA.  
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some millimetres, possesses collective tunicates, connecting all tunicates 
together. This interconnected feature enables the exchange of informa-
tion among them. Additionally, every tunicate independently draws in 
water from the surrounding area and generates JP (jet propulsion). By 
utilizing this JP mechanism, tunicates alter their direction, creating a 
fluid-jet like movement. Tunicates exhibit three distinct characteristics 
during the JP phase. Firstly, to avoid fighting among the tunicate’s 
population during the exploration, every tunicate consistently en-
deavors to move towards the individual with the highest fitness value 
and endeavors to maintain proximity to the fit individual. The calcula-
tion of this X→ vector is carried out according to the equations provided 
below. 

X→=
Y→

Z→
(2)  

Y→= a2 + a3 − U→ (3)  

U→=2a1 (4)  

where Y→, Z→ and U→ are the force of gravity, social interaction and water 
depth. a1, a2, and a3 are the random values. The value of Z→ is given as: 

Z→=[Wmin + a1Wmax − Wmin] (5)  

where Wmax and Wmin are the maximum and minimum values. The 
motion of the current tunicate to the better one is computed as: 

D→=
[

US̅→
− rand×P(z)

̅̅→]
(6)  

where D→ is the distance among food and tunicate, US̅→ is the best tuni-

cate, P(z)
̅̅→

is the position of tunicate and rand is the random value. The 

new position of P(ź )
̅̅ →

is given as: 

P(zʹ)
̅̅ →

=

{
US̅→

+ X→D⤢when rand ≥ 0.5
US̅→

− X→D⤢when rand < 0.5
⤢ (7) 

The modelling of swarm characteristics for tunicate is mathemati-
cally expressed as: 

P(z + 1)
̅̅̅̅̅ →

=
P→(z) + P(z + 1)

̅̅̅̅̅ →

2 + a1
(8) 

Following stages shows the processes of weight updation of the pre- 
trained-DenseNet201 by the TSA. 

Stage 1: Compute the tunicate’s initial population. 
Stage 2: Estimate the TSA controls and ending term. 
Stage 3: Compute the initial population’s fitness. 
Stage 4: Choose the tunicate’s position by the best value of fitness. 
Stage 5: Estimate the tunicate’s direction by Eq. (8). 
Stage 6: The tunicate’s position is updated which are not on the 

searching area. 
Stage 7: Estimate the value of fitness of tunicate’s position. 
Stage 8: The process is repeated until the ending criteria are met. 
Stage 9: Once the ending criteria are met, record the better tunicate’s 

position. 

4. Results analysis 

Evaluation of the suggested COPD is carried out on the Python tool. 
The hyper-parameters like epochs (160), size of batch (128), learning 
rate (0.001), iterations (100) and population size (50) are considered. 
Table 1 defines the measures utilized to compute the performance and is 
based on the variables like true positive tpo, true negative tne, false 
positive fpo and false negative fne. 

4.1. Dataset 

Prior to the application of pre-processing, for the validation and test 
sets 10% and 20% of the images are designated, considering a total of 
4433 individuals. Following the pre-processing process, the allocation 
adjusts to 10% and 18% to validate and test. The study involves a 
comprehensive dataset of 6751 PFT data. In this PFT data, there are 
4774 images (training), 755 (validation), and 1222 (testing). Fig. 3 
defines the samples images of the dataset. 

4.2. Comparative analysis 

Table 2 depicts the comparative analysis of the various approaches 
like CNN, 2D-CNN, AlexNet, ResNet, Denset201 and pre-trained- 
DenseNet201 are compared with the proposed COPD (pre-trained- 
DenseNet201-TSA) model. It is observed that the proposed COPD 
attained better accuracy of 0.985, precision of 0.962, recall of 0.957 and 
specificity of 0.967 respectively. 

Fig. 4 states the accuracy loss curve of the suggested pre-trained- 
DenseNet201-TSA by varying the epochs from 1 to 160. The analysis 
is taken for train and test performances. It is proved that the suggested 
pre-trained-DenseNet201-TSA attained better accuracies and losses after 
the 100th epochs. 

In Fig. 5, the curves depicting the AUC (Area Under the Curve) and 
ROC (Receiver Operating Characteristic) measures for the pre-trained- 
DenseNet201-TSA on the utilized dataset are presented. The visual 
representation illustrates robust classification performance with a less 
false positivity rate. The red line corresponds to the detection rate, 
demonstrating a maximum level of effectiveness. This implies that the 
outcomes of the pre-trained-DenseNet201-TSA attained significant AUC 
value of 98.73%. Table 3 presents the comparative analysis of the recent 
works. It is analyzed that the proposed pre-trained-DenseNet201-TSA 
outperformed all conventional models. 

Fig. 5. Confusion matrix of the suggested pre-trained-DenseNet201-TSA.  

Table 3 
Comparison with recent works.  

Methods Accuracy precision Recall Specificity AUC 

Altan et al. [9] 93.6 – 91 96.3  
Schroeder et al. [10] 0.74 – 0.63 0.832 0.837 
Li et al. [11] 77 – – – 0.81 
Dhar, Joy et al. [13] 0.982 0.98 0.96 – – 
Ho et al. [14] 89.3 – 88.3 – – 
Lopez et al. [15] – – – – 0.86 
Proposed 0.985 0.962 0.957 0.967 98.73  
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5. Conclusion 

This research presents an innovative pre-trained-DenseNet201-TSA 
model that employs an optimizer for early COPD identification. The 
purpose of this work was to assist medical experts in delivering timely 
and appropriate treatment, ultimately contributing to the preservation 
of patient’s lives. The analysis was carried out on the PFT data and it was 
noted that the proposed COPD model outperformed all conventional 
approaches. In the future, different DL models with different adaptive 
optimizers will be utilized for determining the severity of COPD. 
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